Spectral radius and Hamiltonian graphs

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On graphs whose spectral radius

The structure of graphs whose largest eigenvalue is bounded by 3 2 √ 2 (≈ 2.1312) is investigated. In particular, such a graph can have at most one circuit, and has a natural quipu structure.

متن کامل

Walks and the spectral radius of graphs

Given a graph G, write μ (G) for the largest eigenvalue of its adjacency matrix, ω (G) for its clique number, and wk (G) for the number of its k-walks. We prove that the inequalities wq+r (G) wq (G) ≤ μ (G) ≤ ω (G) − 1 ω (G) wr (G) hold for all r > 0 and odd q > 0. We also generalize a number of other bounds on μ (G) and characterize pseudo-regular and pseudo-semiregular graphs in spectral terms.

متن کامل

On Complementary Distance Signless Laplacian Spectral Radius and Energy of Graphs

Let $D$ be a diameter and $d_G(v_i, v_j)$ be the distance between the vertices $v_i$ and $v_j$ of a connected graph $G$. The complementary distance signless Laplacian matrix of a graph $G$ is $CDL^+(G)=[c_{ij}]$ in which $c_{ij}=1+D-d_G(v_i, v_j)$ if $ineq j$ and $c_{ii}=sum_{j=1}^{n}(1+D-d_G(v_i, v_j))$. The complementary transmission $CT_G(v)$ of a vertex $v$ is defined as $CT_G(v)=sum_{u in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Linear Algebra and its Applications

سال: 2012

ISSN: 0024-3795

DOI: 10.1016/j.laa.2012.05.021